
Eventide
^ the next step

I COMMAND FILE ROM
Li INSTRUCTION MANUAL

u

I FIRST printing: AUGUST 19S2

u

j

u

u

u

EVENTIDE CLOCKWORKS, INC.* 265 WEST 54TH STREET*NEW YORK, N.Y. 10019*212-581-9290*TWX: 710 581 2593

INTRODUCTION

The Eventide COMMAND FILE ROM is a firmuiare prosram designed to give

the Hewlett-Packard 9845 series of desktop computers the capability of

utilizing a COMMAND FILE- Installing this ROM adds several BASIC

statements and commands to the computer's repertoire designed to

accomplish this aim.

ASSUMPTIONS

In writing this manual we make the assumption that you are familiar

with the programming and operation of your 9845- Of course the H-P
manuals should be consulted when necessary? as should the Eventide

manuals for our other option ROM''s.

THE COMMAND FILE CONCEPT

Perhaps the fastest way to understand command files (CF) is to

consider what you do when you sit down at the computer- Assuming the

power is turned on (we wouldn^t want the CF to be able to do that!)?

YOU will typically load a program (LOAD "PROGRMsmsus") and hit the RUN

key- After the program has initialized and run for a while? it may

re<^uest an input from you-

WHAT IS TODAY^s DATE? SIR?

At this point? you are expected to enter the date in whatever format
is expected and press <CONT>.

After the program chugs away for an additional while? it may ask some

thing likes

WHAT FILES SHALL I PROCESS TODAY?

To which YOU reply? EXPR_5? EXPR-6 and again press <CONT>

Lefs assume that this program takes your experimental data in the

two files and does some statistical analyses and stores the results in

two DATA files named RES5 and RES6. This analysis may require

anything from 5 to 30 minutes? depending upon the data. After this

program is finished? it will typically issue an enlightening message

such as "FINISHED" and the run light will go off. Your next step will

be to prepare a report on the results of the experiment. To do this

YOU require another program called "ANLZEX"? which reads files in the

same format as RES5 and RES6 are printed on the disk or tape.

ANLZEX requests the file name and other information necessary to

prepare the printed report on each experiment and to draw the graphs.

You will typically run this program once for each RES file. Each run

requires approximately 16 minutes.

The above scenario is a typical one for many operations. While the

details vary? the problem is the same: YOU waste your time WAITING

for the computer to do something. Note the times involved: if each

process takes a few seconds? you don^t mind waiting. If each process

takes several hours or days? you don't bother waiting? you Just go off

and do something else. But» if each process takes several minutes*

YOU twiddle Your thumbs.

While You-'re twiddling* you might want to think what to do about the
problem. The standard solution can be characterized as "one daY I''ll

have to get around to combining those two programs!" Unfortunately
that particular daY is not around the corner (it's actual1y on a
little island near NovaYa ZemlYa). And besides* the programs are long*

not well documented* and won''t fit in memorY.

OK* YOU saY* I 11 chain a slave to the kevboard and have him tYPe in

the commands when the computer is readY. Unfortunately slaves have to

be fed and do require sleep. This is expensive and wasteful of
computer time.

What YOU reallY want is a computer-resident genie who will notice

when the computer is waiting for an input* and tell it what you would

have told it were you not busY talking to the boss trYing to Justifv

the purchase of more memorY. And that* in a roundabout definition* is

what a COMMAND FILE is* and does.

COMMAND FILE DEFINITION

More formal1y; A COMMAND FILE is a LIST OF KEYBOARD COMMANDS which are

executed sequential1y each time the computer is idle.

Idle* in this case* means* whenever the computer is not

executing a program* or when it is waiting for user input*

such as when an INPUT or LINPUT statement is being executed

in a program.

A COMMAND FILE is a hYbrid between the special function kevs and a

regular program. An SFK can perform anY function. You define an SFK

to be a certain sequence of keY presses. Thereafter* pressing the SFK

is the equivalent to pressing the same sequence of kevs. A program*

on the other hand* is a sequence of statements. To be a valid program

line* the statements have to fulfill certain requirements: each must
be SYNTACTICALLY VALID* and it must be PERMITTED.

10 A=B+C is sYntactical1Y valid because it conforms to the rules of

BASIC* and is permitted.

20 A*B*C is not syntactical 1y valid (no verb).

30 SCRATCH is not permitted for the obvious reason that self-erasure
is not an especially desirable characteristic for most

programs.

Many statements are valid keyboard commands but invalid in

programs. Line 20 is valid: it displays the values of variables A*

B* and C. Line 30 is valid. It is obviously OK for the operator to
erase the program.

While a program rarely has need to execute "forbidden commands"* the
operator has this need frequently. The Special Function Keys* which
memorize keystrokes and do no syntax-checking* are ideal for

"forbidden commands." However* since they cannot* except under verv
limited circumstances* call each other* each SFK press can only
execute one command.

2

u

Ideally* in order to simulate a complete operating session* one

would like to be able to execute a number of SFK^s automatically in

sequence. This is another way of sayins that one would like to be

able to write an arbitrary list of commands* completely outside the

structure of the BASIC program* which could be used to simulate the

presence of the operator- Therefore* an alternative definition could

be:

A COMMAND FILE is a list of commands? statements* operations* and

keystrokes which are executed outside of and independently

from the operation of a BASIC program.

And the final alternative definition goes like this:

A COMMAND FILE can .d.o almost ANYTHING a user can do while sitting
at the 9845 keyboard.

What this means to the user is that* as long as a sequence of

operations can be defined in advance* it can be performed without

human supervision. A long series of programs can be listed and

cross-referenced. Even STOREd programs* KEY files* etc can be

documented in this fashion. Programs can be EDITed by CF^s. You can

take an arbitrary list of STOREd programs and insert a copyright

notice and serial# in line #2 if you so desire* even if it requires

RENumbering the program to do so. Sequences such as those in the

first example can be executed automatically by placing the names of

the files and the -Continue key in the appropriate locations. Many

more applications suggest themselves.

The CMD FILE ROM incorporates several BASIC extensions to assist you

in developing and using these CF^s. To create CF^s* you may use EDIT

CMD or LOG CMD. CF^'s may be renamed* stored* and loaded from the

keyboard or from BASIC programs. CF-'s may even be written by BASIC

programs. CF's may call each other or themselves. They may also

incorporate up to 9 parameters passed from the calling routine.

Running a command file from the keyboard or from a program requires

that the following statement be executed from a program or from the

keyboard.

DO CMD "name"*[parameter IC*parameter 2...Cparameter 9331

The balance of this manual will give the syntax and special

instructions for using this new capability.

QUICK REFERENCE

For convenience* all of the CMD FILE BASIC extensions are listed

here with brief descriptions. Most of the keywords are direct

counterparts of their BASIC brethren.

EDIT CMD "command name"

This statement places the computer into a special editing mode

in which CF"s can be created. The "command name", must be 15

characters or less. Leadins» trailing* and imbedded blanks count*
and remain part of the CF name.

Most kevs operate as thev do in SFK definition (see H—P manual).

The <shift> CLEAR LINE kev exits editing mode without storing
changes. The STORE kev exits the editing mode and preserves the file.

LIST CMD C"command name"3

LIST CMD # selectcode C*hpib3 C>"command name"3

Lists a single command file or all CF*'s to the svstem printer* or to
a specified printer.

SCRATCH CMD C"command name"3

Erases one or all command definitions from memory.

RE-NAME CMD "command name" TO "new name"

Allows renaming of command file definitions in memory.

STORE CMD "name:msus"

Creates a mass storage file "name" on a mass storage medium* and
stores all memory—resident command files in a DATA file.

LOAD CMD "name:msus"

Reads command file definitions from the specified mass storage file*
and adds them to those already in memory* except those with duplicate
names* which are replaced.

DO CMD "name"»Cparameter IC*parameter 2...Cparameter 9333

Begins executing the command file. Parameters are any string

expression which are substituted verbatim for the parameter-
declaration in the CF.

LOG CMD "command name" C*length3

Creates a buffer of <length> in bytes for storing commands as they
are executed. When exiting the LOG CMEi mode* this buffer is trans
ferred to CF "command name." The default value for length is 1000
bytes* and the maximum value is approximate!y 32000 bytes* depending
uPon I/O processes pending and other CF''s in memory.

When LOG CMD is active* an "L" appears immediately to the left of
the "run light". The LOG CMD mode is exited by pressing <shift>
CLEAR LINE.

INSTALLING THE ROM SET

Although we consistently refer to the product as a ROM» it is

actually 2 ROM's* a low-order byte and a high-order byte. There are

also additional chips (integrated circuits) which may have to be

installed in their sockets. In this section only we will refer to the

ROM SET when it is necessary to indicate more than one ROM.

If you are presently the owner of an Eventide WMAZ-4 memory board* and

have purchased this ROM set as an add-in accessory* please retrieve

your WMAZ-4 manual for the memory board installation procedure.

In addition to this instruction manual* and to any other manuals that

came with the ROM set (if you ordered one of the combination products*)

you will find a sheet that describes the ROM installation procedure.

The steps are as follows:

1: Remove the memory board. (Refer to the WMAZ-4 manual.)

2: Insert the ROME'S in the appropriate sockets. (Refer to the sheet

mentioned above.)

3: Re-instal1 the memory board.

If you have ordered the ROM set in conjunction with the memory

board* it will already be installed in the appropriate sockets. In

this case* again refer to the WMAZ-4 manual for information on how to

instal1 the memory board.

CHECKOUT

After installation* turn on the computer and try the tests suggested

in the WMAZ-4 manual to confirm that the board is recognized. If

all the tests pass* try the following.

Key in the following sequence:

<clear line> SCRATCH CMD <execute>

If the keyboard input line clears* it indicates that the ROM has

been recognized. If you get an error indication* it means that the

ROM has not been recognized. If this happens* carefully review

your installation procedure* and then call Eventide for assistance

if necessary.

(If the computer remains in the MEMORY TEST mode* it means that you

probably exchanged the LSB and MSB ROM's. This will not cause any

damage* but must be corrected.)

If you have gotten this far with no errors or problems* your computer

should have a fully functional COMMAND FILE facility.

CREATING COMMAND FILES

Command files mav be created in three uiavs!

By using the LOG CMD statement

By using the EDIT CMD statement

By constructing them with BASIC programs

Which method you use is primarilY a matter of convenience. For fairlY

short CF*'S7 you will probablY want to use EDIT. For CF'^s that involve
verY time-consuming sequences* you will also probablY want to use

EDIT. For CF''s that use a large number of guicklY-completed commands?

YOU will probablY want to use LOG.

If YOU do use LOG? you will probablY want to EDIT the resulting file
in anY event? since the LOG procedure necessarilY cannot log everY keY

stroke. The reasons for this will be made clear later.

Constructing CF^s with BASIC programs should probablY be reserved for
extremelY long and regular CF^s. Just because it can be done doesn't

mean' that it must.

EDITING COMMAND FILES

Before reading this section? you maY want to re-read chapter 13 in

the 9845 operating manual regarding SFK (Special Function KeY) editing.

The SYntax for the EDIT CMD statement is:

EDIT CMD "command name"

"command name" is a quoted string of up to 15 characters. Note that

leading? trailing and imbedded blanks (spaces) are significant!

" CMDl" is not equivalent to "CMDl." When a CF is being edited or

listed? the name will appear within quotes to show the positions of anY

leading or trailing blanks.

If there is present1y a CF with the same name? it will appear on the

screen readY for editing. If no such file exists? it will be created?

and the name will appear at the top of the screen? Just as the SFK

number does during SFK editing.

The major differences between SFK and CMD editing are in the actions

of the cursor movement keYs and in the fact that keYs that would

normal1y terminate an SFK definition appear as a new line in the CF

without terminating it. A "line" in a CF is anY combination of tYPing

keY strokes or anY SINGLE named keY. Thus? if you tYPe in

ABC<execute>DEF<:cont>HIJ<cl ear> the CF will appear as follows:

ABC

-Execute

DEF

-Continue

HIJ

-C1ear

Unlike in the case of SFK editing? the cursor movement kevs still work.

Specifically? the roll kevs? insert line? delete line? arrow? home?

and similar kevs still function essentially as they do in the program

editing mode. This makes it somewhat easier to manipulate the

typically much larger CF-'s. You can still insert these keys into the

CF by pressing <controlXcursor key>. This will cause the number of

the key to appear on its own line in the CF.

INSERTING PARAMETERS WHILE EDITING

The utility of the CF is greatly increased by the ability to use

PARAMETERS. Inserting a parameter in the CF allows one to supply

certain information ea^ch time the CF is run? without requiring any
editing. Hearkening to our initial example? lefs say you have a

program which? after 5 minutes? requests a file name. Your CF looks

something like this:

LOAD "EXPROG"

-Run

20/7/82

-Continue

EXPR-.5

-Continue

This file will first load "EXPROG" and run it. When the program
asks for the date? 20/7/82 will be supplied? and the <continue> key will

be "pressed." Five minutes later the file name will be requested? and

the CF will supply EXPR_5 as the file name. If you want to run the CF
tomorrow? you will have to edit it and change 20/7/82 to 21/7/82 and

EXPR_5 to? say EXPR-6. On each subsequent run? you will have to edit

the CF and change these two items.

A more convenient way to do this is to use parameters. Substitute

-Parameter 1 for the date? and -Parameter 2 for the file name. The new

CF looks like this:

LOAD "EXPROG"

-Run

-Parameter 1

-Continue

-Parameter 2

-Continue

When the CF is run? you can substitute the date for Parameter 1 and

the file name for Parameter 2 in the DO CMD statement. Thus? you will

never have to edit the CF.

Parameters are entered into the CF by simultaneously pressing the

Control key and any numeric key between 1 and 9 inclusive. Like other

special keys? each parameter has its own line in the CF. A parameter

may be any string expression. However? when calling CF^'s? the quote

marks around the parameter ("<parameter>") will be stripped. If the
parameter actually must be a quoted string? you can either explicitly

place the quotes in the CF? or make the parameter string expression

contain the quote marks. The two examples below are equivalent.

CMD "XMPLl"

LOAD "

-Parameter
II

-Execute

foil ouied bv. . .

DO CMD "XMPLl","EXPROG"

CMD "XMPL2"

LOAD

-Parameter 1

-Execute

foil oujed bY. . .

DO CMD "XMPL2",CHR$(34)8<"EXPR0G"S<CHR$(34)

Clearly, it will be preferable to place the quote marks in the CF if

the CF is to be used at all frequently.

INSERTING SPECIAL FUNCTION KEYS (SFK's) WHILE EDITING

SFK''s can be inserted in a CF. Doins so is precisely equivalent to
inserting the individual keystrokes that make up the SFK. When an SFK
is encountered during CF execution, in effect the CF "presses" the key
and then continues its own execution. If the SFK ends with a key such
as CONTinue, the CONTinue will be executed as well.

It is important to note that SFK definitions can change under program,
user, or CF control. Thus an SFK appearing in a CF may not perform

the expected actions. You can take advantage of this fact to use

an SFK file to act, in effect, as a set of parameters. If you do

not plan to use this feature in a given CF, it would be wise to include

a LOAD KEY command in your CF to make sure the correct set of keys are

resident.

UNUSUAL APPEARING KEY FUNCTIONS

Certain kevs will appear to act in a somewhat odd fashion. They ares

CLEAR LINE and CLR=>END

Each of these keys will clear a line of typing keys in a CF, but will

have no effect on named keys such as -Execute.

Starting out with the following CFs

-Execute

GHIJKL

-Execute

Place the editing cursor under any of the letters GHIJKLs

If you then press CLEAR=>END, the letter under which the cursor resides,

and all letters further on, will be erased without affecting either

—Execute. Pressing CLEAR LINE will erase GHIJKL without affecting
either execute. Placing the cursor on the lower -Execute and hitting

CLEAR=>END will have no effect. Placing the cursor on the lower

-Execute and pressing CLEAR LINE will erase GHIJKL without affecting

either -Execute.

These keys are distinguished from DEL LN and DEL CHR, both of which will
delete command keys such as execute. To summarize, CLEAR LINE and

CLEAR=>END have no effect on named keys.

EXITING THE EDITING MODE

The CF editor mav be exited in one ot three waYss

i: STORE

2: <shift>

CLEAR LINE

Depressing STORE automatical1y saves the current

definition of the CF being edited. AnY previous

definition with the same name is erased.

Depressing this kev combination discards anv

changes in the CF being edited> and retains the

old version with the same name? if anv.

3: RESET

(<control> STOP)

Same effect as <shift> CLEAR LINE,

for casual use.

Not recommended

If YOU should run out of memorY while editing a CF? the computer

will BEEP? but YOU will receive no other error indication. No further

command lines can be entered if this happens.

CREATING COMMAND FILES BY USING LOG CMD

If YOU have used Your 9845 for long enough? you''11 probablY find

most of Your keYboard commands are issued bY Your fingers with little

intervention bv the brain. You will normal1y load a program and

automatical 1Y hit the RUN keY without thinking about it. If you were

asked to write down the complete sequence of manual operations? you

probablY couldn''t do it without serious thought. LOG CMD is a

shortcut to the creation of CF^s. In effect? it makes the list of

keYboard commands for you? with certain limitations.

You enter the LOG CMD mode bY tYPings

LOG CMD "command name" C?lengthD <execute>

Length is a parameter governing the maximum number of bYtes that maY

be used bY the CF. Its default value is 1000 bYtes. After hitting

EXECUTE? the following happens:

l:
•*> •

3:

A temporarY buffer is created of <length> bYtes.

The letter "L" appears in the sYstem displaY line immediatelY to

the left of the "run light." This L appears to the right of the

keYboard mode displaY? so TYPWTR will appear as TYPWTRL and

SPACE DEP will appear as SPACE DEPL.

TYPed lines and certain keY presses are saved in the buffer until

the LOG CMD mode is exited.

To be saved? a line must be terminated bY anY of the following keYs:

EXECUTE STORE CONTINUE STEP

The following keY presses are also saved individual 1y:

RUN PAUSE STOP

SFK''s are saved as their equivalent kev strokes providing theY

terminate with anY of the above kevs? or if the keY strokes are in

the keyboard input 1 ine uihen any of the above keys is pressed-

Certain other keys? which would normally be saved in CF EDITING
mode? are NOT SAVED in LOG CMD mode. Keys not saved are CLEAR SCREEN?
DEL LINE? INS LINE? BACKSPACE? and others involved in cursor movement
and display control. If you want these keys to be included in the CF?
they must be added durins an editins operation. (The rationale for
this is simple...you certainly don"^t want your CF full of typing
corrections!)

The same comments with respect to unsaved key presses apply to SFK's.

If an SFK is defined ass It will be LOGged ass

-Clear line

MASS STORAGE

-Execute

IS "ST15" MASS STORAGE IS "sT15"

-Execute

This is usually of no consequence because the keyboard input line is
automatically cleared by the previous command execution.

EXITING THE LOG CMD MODE

You normally exit the LOG CMD mode by hitting <shift> CLEAR LINE.
When this is done? the following events occurs

is The logging operation ends and the "L" is turned off.

2s The completed buffer is stored as a command file with the name

specified in the LOG CMD operation. (Any other CF with the same

name is deleted.)

3s Any unused buffer space is released.

It is also possible to exit the LOG CMD mode bv executing SCRATCH A
or by hitting RESET (<control> STOP). RESET discards the LOG CMD

buffer without affecting any data in memory (although? see the H—P

manual for the other effects of RESET). SCRATCH A discards the
buffer? all CP's? and? of course? everything else.

If you run out of buffer space before terminating the LOG CMEi

operation? the computer will beep each time it would have stored a

command line? and the line will not be stored. Lines stored up to

that point will? however? be retained and will remain usable.

Only one LOG CMD operation can be active at a time-

do more? the 9845 will beep-at you.

If you try to

10

CREATING COMMAND FILES WITH BASIC PROGRAMS

Because CF''s are stored and retrieved from BASIC DATA files* it is
possible to generate CF^s from BASIC programs. Each CF is stored
as two strings!

String l! The CF NAME* in 1 to 15 characters.
String 2: The CF CONTENTS* in 1 to however manv characters are

required.

Multiple CF's are stored in one file in groups of 2 strings as above

for each CF.

Function kevs are stored in the same manner as thev are read br the

ON KBD command! Regular typing kevs show up as an ASCII character*

SYStem kevs as a kev number preceded bv CHR$(255). Parameters are

inserted as!

CHR$(255)S«CHR$(55)

CHR$(255)8<CHR$(56)

-Parameter 1

-Parameter 2

CHR$ (255) 8<CHR$ (63) -Parameter 9

Using the tables in the 9845 owners manual* you can determine the

codes for any of the system keys.

An example program to write a simple CF follows!

COMMAND FILE! CMD "XMPL"

LOAD "PROG"

-Execute

PROGRAM! 10 DIM Name$C16I*Cmd$C2003

20 Name$="XMPL"

30 Cmd $= " LOAD " &CHR$ (34) & " PROG " S<CHR$ (34)

40 Cmd$=Cmd$&CHR$ (255) S<CHR$ (21)

50 CREATE "CMDXMP'M

60 ASSIGN #1 TO "CMDXMP"

70 PRINT#1;Name$* Cmd$

80 ASSIGN #1 TO *

90 LOAD CMD "CMDXMP"

100 END

USING COMMAND FILES

DIM strings

Assign CF name

LOAD "PROG" and

EXECUTE TO Cmd$

CREATE DATA FILE

AND PRINT

CF DATA IN IT

CLOSE FILE

LOAD NEW CMD FILE

Once YOU have created a CF* it may be executed (run) using the following

statement!

DO CMD "command name" C*parameter 1 C*parameter 2...C* parameter 9 33 3

"command name" must be the name of a valid CF in memory.

Parameters* if included* must be valid string expressions. Any string

expression will be accepted* whether it be a literal (quoted string)

or an expression containing string variables.

11

n
ERROR MESSAGES:

If "command name"

56» "File name is

does not correspond

undefined"? will be

to a valid

issued.

CP name? error

If a parameter is not a valid strins expression? an IMPROPER
EXPRESSION error will result. Note that if a parameter evaluates
to an expression that is invalid in context? anv error message

mav result depending upon the parameter"^s use. For instance?

"A/0" is perfectly valid as a file name? but will result in
ERROR 31 (Division bv zero) if the CF tries to execute the

expression.

CALLING CF-'S FROM OTHER CP-'S (NESTING)

CF''s can be nested without limit? subject to the same memory
limitations mentioned below,

calling CF is suspended until

CF are exhausted.

When a CF calls another CF? the

all statements in the called

CALLING CP'S FROM THEMSELVES (RECURSION)

CF^s may call themselves recursively without limit? subject to cer

tain memory limitations. Each time a CF calls itself? an additional

quantity of memory is allocated. Eventually the computer will
report ERROR 2 (Out of memory) and CF execution will abort. The

memory available for CF''s is not the total available to the 9S45?

but only that available to I/O processes? typically 30K bytes.

All CF-'s that call themselves are not necessarily recursive. If

a CF calls itself as its final step? it in effect loops? and can

continue indefinitely.

NON-RECURSIVE CF RECURSIVE CF

CMD "NON-REC"

LOAD "PROG"

-Execute

LIST

-Execute

DO CMD "NON-REC"

-Execute

CMD "RECURSIVE"

PRINT "RECURSION LEVEL"?A?"MEMORY";AVM

-Execute

A=A+1

-Execute

DO CMD "RECURSIVE"

-Execute

PRINT "HELP ME! I^M STUCK"

-Execute

The non-recursive example will continuously list "PROG." The recursive
program will continuously print the recursion level and the amount of

memory available. (AVM is a statement in the Eventide PUP PLUS ROM. If

you don't have this ROM? delete the portion of the line after the
variable A.) Eventually the recursive example will terminate with an

ERROR 2 without ever having printed "HELP ME! I-'M STUCK."

CALLING CP'S FROM PROGRAMS

Normally DO CMD is executed from the keyboard- It may be executed
from a program? but doing so produces what may appear to be anomalous

resu1ts:

12

15 If a DO CMD statement is executed from a prosram» it will not

begin executing until the program becomes idle^ STOPs? or ENDs.
(Just as a CF executed from the keyboard will not begin until
the program reaches an idle state.)

2! If multiple DO CMD statements are executed from a program^ thev
will be performed in REVERSE ORDER after the program reaches idle.

To prevent confusion* we recommend that you only place DO CMD
statements at the end of a program* and only call CP's from the

keyboard or from other CF^s.

TERMINATING COMMAND FILE EXECUTION

Normally* a CF will terminate execution when its last statement is

exhausted. It will also terminate if BASIC reports an error or if

an operator physically presses the STOP key (or RESETs the computer).

Note that errors trapped (by ON ERROR* ON END* etc.)* will not

stop CF execution. If your maJor CF application is to run the

computer unattended for long periods* it would be a good idea to
add routines to trap predictable errors such as the possibility that

peripherals might be temporarily down due to power failure. Or* for

instance* if your program generates long printouts* you might want to

trap a PRINTER OUT OF PAPER error and redirect your I/O to disk.

(No* the COMMAND FILE cannot replace the printer paper.)

REMOVING COMMAND FILE DEFINITIONS

It is possible to remove CF's from memory using the following command:

SCRATCH CMD C"command name"!

If the command is executed without the optional name parameter* all

CF^s in memory will be erased. If the name is used* only that CF

will be erased* if present.

If an attempt is made to SCRATCH non-existent CF-'s* the command will

nonetheless execute and no error message will be issued

If a SCRATCH CMD statement is executed from a running CF* the CF

will be erased. However* because an executing CF is saved in a

special buffer* it will continue to execute even though the CF is

no longer present!

However* once the buffered CF is completed* it will disappear* and

the version previously in memory* having been SCRATCHED* will no

longer be extant it any usable form.

LISTING COMMAND FILES

Command files may be listed to the system printer;

LIST CMD C"command name"!

If the optional name parameter is used* only that CF* if present*

13

will be listed. Otherwise* all CF''s will be listed. If the name
parameter is used and there is no correspondins CF» no listing will

be output.

Command files mav be listed to a designated printer:

LIST CMD # selectcode C*hpib3 C;"command name"3

<Selectcode> corresponds to the address of the optional printer* and
<hpib> corresponds to the HPIB (GPIB) address* if anv. See the
9845 operating manual for further information on these concepts if
necessary.

CHANGING THE NAMES OF COMMAND FILES

The names of CF's resident in memory may be changed. You might want
to do this as part of the process of savins a file under one name
before editing or modifying it and savins it under a, new name.

To change a name* use the command:

RE-NAME CMD "old command name" TO "new command name"

NOTE: This command differs slishtly from the mainframe RENAME
command in that the keyword is hyphenated.

ERROR MESSAGES

If <old command name> doesn't exist* ERROR 56*

File name is undefined* is issued.

If <riew command name> already exists* ERROR 54*

Duplicate file name* is issued.

SAVING AND LOADING COMMAND FILES ON MASS STORAGE

All command files in memory may be stored on any mass storage device

(including RAM if you have the Eventide Memory Mass Storage ROM).

This is done with the command:

STORE CMD <name>C:msus3

For this statement* you may use any valid mass storage file

specifier as defined in the H-P manuals. Note that mass storage

directory file names may be a maximum of 6 characters.

To load a set of CF*'s* use the corresponding:

LOAD CMD <name>C:msus3

Again* use any valid mass storage file specifier.

ERROR MESSAGES: LOAD CMD and STORE CMD

These commands are precisely analogous to the LOAD/STORE

program commands. Any mass storage error can be encountered*

14

such as missing/duplicate file names? defective or missins

drives? etc. There is no error message specificallv related
to the fact that you are deal ins with CF^s instead of prosrams.

SPECIAL CONSIDERATIONS REGARDING CF^S AND MASS STORAGE

There is no specific TYPE of file that contains only CP's. Unlike

the KEYS file that cannot be accessed bv BASIC? CP's are STOREd

to and LOADed from files of type DATA. As explained earlier? it is

possible to write CP's from BASIC by pVacins the CP lines in

strins variables.

There is no inherent mechanism preventins one from accidentally

trying to load a non-CP DATA file with a LOAD CMD statement.
If the DATA file contains non-CP data? unpredictable results may occur.
Attempting a program GET operation on a CP file will produce the
same error messages as will trying to GET a string data file

without proper line numbering.

COMMAND PILE LIMITATIONS

There is one maJor limitation on the usefulness of the CP. As

stated in the introduction? CP-'s are activated whenever the computer-

is waiting for an input or otherwise idle (STOPped). Some programs

are written using ON KBD? ON KEY or other statements that require

an input but do not put the computer in any type of wait state.

Unfortunately? there is no consistent method of detecting when the

9845 is waiting for this type of input. Thus? CP statements will

not be executed under such circumstances. If you wish to use

programs containing any of the statements listed below? you must

re-write that portion of the program.

Here are the statements that CP-'s cannot detect:

ON KEY ON KBD EDIT KEY EDIT CMD DIGITIZE LETTER

Note that CP''s CAN drive regular program editing.

Re-writing programs to eliminate this disability can be trivial or

challenging. Some ON KBD statements are inserted to save a single

keystroke. In others (such as text editors)? it is hopeless even to

try.

MISCELLANEOUS NOTES AND CP TRIVIA

Each command file definition in memory uses one of 128 available

buffers. Hence a maximum of 128 command files may be loaded

simultaneously. In practice? keeping more than 20 to 30 in memory

should be avoided to prevent degradation of the 9845''s I/O

performance. Note that each assembly language module in memory

requires one buffer as wel1.

SCRATCH A stops command file processing (and everything else!)
if you want to clear the memory to the extent possible with a CP
without stopping execution? perform SCRATCH C? SCRATCH P? and SCRATCH K.

15

STORE ALL and LOAD ALL prasarve command file definitions? but NOT
active CF processing. Also? a STORE ALL file created on a machine
with a CF ROM cannot be LOAD ALL''ed on a machine without one. (This
is generally true for ROM configuration differences.)

16

